If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x-65.61=0
a = 1; b = 2; c = -65.61;
Δ = b2-4ac
Δ = 22-4·1·(-65.61)
Δ = 266.44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-\sqrt{266.44}}{2*1}=\frac{-2-\sqrt{266.44}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+\sqrt{266.44}}{2*1}=\frac{-2+\sqrt{266.44}}{2} $
| -2(2x-1=-15 | | 1x0-798534577^666=x | | (x-7)*2=0 | | 5(x+2)-2x=5x+10 | | 2+2-x=x+2-2 | | X^3-3x=68 | | 3(2a+2)=12 | | 1+1-x=x+1-1 | | 2(3y+2)=28 | | x÷4+2=6 | | (3x+11)/4=80 | | 2n+9=3n-12 | | X+7/16=3/8+x-3/5 | | (3/5)(2x-1)=4 | | X-2x+10=100 | | 3e-7=23 | | 3x+5=18+8x-4 | | -0.05x^2+x+40=0 | | 3x+5=18+8x—4 | | 8-2x=44 | | 8-2x+4x=44 | | 15+4t=36 | | 3/14x7/9=x | | 7=2(c+5) | | 2(3x+4)-3(x-1)=x-12(3x+4)-3(x-1)=x-1 | | 3x+50+3x+5=180 | | x+4/4=9/12 | | -9u=-9-10u | | 5x+207=9 | | n-0.23=4.6 | | (x+1)(x+1)=69 | | 4+8n/2=20 |